
Integration
Guide

June 2022

GETTING STARTED

I. DATA REQUIREMENTS

Required Information 5

III. ESTABLISH A CONNECTION

IV. SETUP THE BENEFITS MANAGER

API Connector 8

Benefits Setup 9

Benefits Manager 10

Example Administration Integration 11

2

Third Party Platform Integrations 3

Environment 4

II. REQUIRED FILES

Integration Needs 7

V. INITIALIZE THE GUIDE

Request a Token 12

Starting the Guide 15

VII. CAPTURING EVENTS

VIII. USER EXPERIENCE EXAMPLES

X. DEVELOPER PORTAL

VI. CUSTOMIZE YOUR INTEGRATION

Setting up a Webhook 18

Dashboard / Welcome Page 20

Enhancing the Enrollment Process 21

Documentation 28

Compile Your Theme Files 16

IX. PROGRAMMATIC ACCESS

REST API Examples 23

3

Getting Started

THIRD-PARTY PLATFORM INTEGRATIONS
Our API provides programmatic access to all data AND can render the interfaces required to
configure benefits information as well as deliver the guide experience to your end-users.

This allows you to leverage a RESTful API to setup benefits and save and retrieve data stored
in our system at any time. You can rebrand our decision support tools and host them under
any domain.

You can bring the Benefits Guide directly into your employee portal and use the outputs as
you see fit.

The primary driver to this implementation is the API Connector which is a file hosted by the
integrating platform that acts as a proxy for the other components. This file contains your
API key and retrieves data requested by the Benefits Manager and Benefits Guide using
established industry HTTP protocols.

The source files to get started are shown throughout this section but if you want, you can
clone our sample repository to help you get started.

$ git clone git@bitbucket.org:perkytech/perky-sample.git

4

The API is hosted on Amazon Web Services (AWS) and deployed using Aptible’s HIPAA
compliant architecture. We maintain two isolated environments for development and
production purposes.

All development & testing should be done using https://api.perky.dev and updated to
https://api.perky.co when ready for production. A Production-Ready API key will be provided
upon completion of the integration.

ENVIRONMENT

Environment URL PHI-Ready

Development / Staging https://api.perky.dev No

Production / Live Application https://api.perky.co Yes

https://api.perky.dev
https://api.perky.co

I. DATA REQUIREMENTS

First, we require that a “package” object containing the plan options available for a group of
users be created and stored in our system via the API. The package can be referenced by any
unique identifier used by the third-party (typically the id that is used to provide a group of
employees their enrollment options).

Similar to synchronizing package identifiers, we require a user id to be passed to initialize the
request. This identifier can be used to associate results back to the platform as well as be
included in any session results that are queried via the API directly. One instance of a guide
can be initialized per user; however, each package will maintain its own dataset per user
(identified by an immutable session key).

Each benefit type can be configured by eligibility group (consisting of a unique key). For
example, if an employer has different premium contributions for Full-Time and Part-Time
employees; these can be defined as groups under the health benefit. You can then include or
exclude these from different plan options and/or define different premiums and contributions
for each. When a user runs the guide, their “group” eligibility property should be passed in
(e.g., _fulltime, _parttime) with the request. It is also possible to send in an array of plan ids to
determine an employee’s eligibility. See Initialize the Guide for more information.

5

Benefits Eligibility

User Identification

Benefits Package & Plan Identifiers

REQUIRED INFORMATION

6

These can be used to soft default user inputs with values already known by the system of
record.

Description Property Example

Eligibility Object elig {“health”:{“group”:”_fulltime”,
“plans”:[123, 456]}}

Zip Code zip 14450

Annual Compensation comp 50000

Estimated Household Income income 150000

401(k)/403(b) Deferral Percentage retire 3.2

Last Known HSA Balance hsa_balance 6500

Annual HSA Contribution hsa 1350

Pay Periods (a Year) pay_periods 26

Hire Date hire_date 2020-01-01

ADDITIONAL INFORMATION

Enrollment platforms already have most of the personal information required to run the guide
stored in their system. Passing key demographic and dependent data in the initial request
would eliminate the need for it to be keyed in again by the user but is not required. We
require relation, birthdate, and gender for each member passed which is used to determine
eligible coverage types and average health utilization.

First Name Relationship [self, spouse, child] Sex [male, female, other] Date of Birth

John self male 1970-01-01

Jane spouse female 1970-01-01

Jack child male 2000-01-01

Required User Data / Optional Dependents

7

II. Required Files

There are four files required to facilitate a complete integration.

The URLs of these files can be whatever you choose but we will use the following in our
examples and highlight where you can change them to fit your own system requirements.

File / Sample URL Description

API Connector
/connector

This file will authorize and facilitate communications between the API and your
server using your unique API_KEY.

Benefits Manager
/setup

This file will call and render the management UI to create and store the neces-
sary JSON object.

Benefits Guide
/guide This file will initialize a token and render the guide UI for the end-user.

Webhook (optional)
/listener

You can specify a URL to receive event notifications to update your own re-
cords.

INTEGRATION NEEDS

8

The integration requires a server-side script to send authenticated requests to the API. This
script can utilize cURL or another server based technology to pass data to the endpoint and
return JSON based responses. Requests are authorized by setting the HTTP_APIKEY header
to the environments authorization key.

The connector file should be placed on it’s own web accessible path behind a user login. In
our example, this file at /connector and should be updated to match your configuration. You
will also want to include any user authentication methods used by your system to control
access to this file (e.g., session/cookie).

<?php

 //API PARAMETERS (Developer Supplied API Key)

	 define(‘C_APIKEY’,	‘YOUR_KEY’);	

	 define(‘C_APIURL’,	‘https://api.perky.co/’);	

	 define(‘C_HOOK’,	‘https://www.example.com/listener’);	

	 //Simple	cURL	Based	Request

	 function	ProcessRequest($endpoint,	$data=’’)	{	

	 	 $curl	=	curl_init();	

	 	 curl_setopt_array($curl,	array(

	 	 	 CURLOPT_RETURNTRANSFER	=>	1,	

	 	 	 CURLOPT_URL	=>	C_APIURL.$endpoint,	

	 	 	 CURLOPT_HTTPHEADER	=>	array(‘APIKEY:’.C_APIKEY),	

	 	 	 CURLOPT_POST	=>	1,	

	 	 	 CURLOPT_POSTFIELDS	=>	array(‘data’=>$data,	‘webhook’=>C_HOOK)	

)

);	

	 	 $resp	=	curl_exec($curl);	

	 	 curl_close($curl);	

	 	 return	$resp;	

 }

	 //IF	AJAX	BASED	REQUEST	&&	ENDPOINT/ACTION	PRESENT	(INCLUDE	USER	AUTHORIZATION)

	 if(isset($_SERVER[‘HTTP_X_REQUESTED_WITH’])

	 			&&	($_SERVER[‘HTTP_X_REQUESTED_WITH’]	==	‘XMLHttpRequest’)

	 			&&	isset($_POST[‘endpoint’]))	{	

	 	 //OUTPUT/RETURN	JSON	RESPONSE	

	 	 echo	ProcessRequest($_POST[‘endpoint’],	$_POST[‘data’]);	

 }

III. Establish a Connection

IV. Setup the Benefits Manager

This is a file that takes a value representing the internal enrollment id and passes it to the
initial AJAX request. The included JavaScript will receive the response and render the benefits
setup screens to the specified container using the included script and styles automatically.

The package ID used will maintain a 1-to-1 relationship, so any existing data associated with
that ID will be populated and/or created at that time. When the package is saved; a webhook
event is triggered and the window will can be closed or returned to the referring URL using
the “onsave” callback method. Additional user authentication should be added to this page.
You can also include your own theme file to customize it to match your administrative
environment.

BENEFITS SETUP

9

BENEFITS MANAGER

<!doctype	html>

<html>	

	 <head>	

	 	 <meta	charset=”utf-8”>

	 	 <title>Benefits	Manager</title>	

	 	 <script>

	 	 	 var	pm_settings	=	{	

	 	 	 	 ‘url’:’/connector’,	

	 	 	 	 ‘init’:’package/_{id}/edit’,	

	 	 	 	 ‘on_start’:	‘pkg.set’,	

	 	 	 	 ‘on_save’:	function()	{	location.href=’/enrollments’;	},

	 	 	 	 ‘lib’:	true	

	 	 	 };	

	 	 </script>	

	 	 <script	src=’https://api.perky.co/pm-js’></script>

	 	 <link	href=’https://api.perky.co/pm-css’	rel=’stylesheet’	type=’text/css’>

	 	 <!--INCLUDE	YOUR	OWN	CUSTOM	THEME	VARIABLES	HERE	-->

	 	 <link	href=’/theme.css’	rel=’stylesheet’	type=’text/css’>

	 </head>

	 <body>

	 	 <div	id=’header’><div	id=’logo’></div></div>

	 </body>

</html>

10

Configuration Options Default Description

url /connector The location to your connector file

con body HTML container to append the UI

init /package/_{id}/edit Initial API endpoint to call. Replace {id} with your value

on_start pkg.set The initial callback to render package UI w/ retrieved data

on_save function() Callback for the save function. You can use it to close the
window or return to the original location.

lib false Allow plan library management (store/delete plans)

Example Code [/setup]

The process for integrating the Benefits Manager is going to differ from platform to platform.
In this example, the third-party administration has a list of active enrollment periods.

Each of these has their own unique ID. This ID can be POSTed using a standard HTML form
to the setup page which will then use this to associate data.

This button triggers a form POST containing your unique package identifier to the /setup
page within your domain. The button text could also change to reflect presence of data using
a /package/_{id} request and reading the response code (200 vs 401).

EXAMPLE ADMINISTRATION INTEGRATION

<form	action=’/setup’	method=’POST’	target=’perky’>	

	 <input	type=’hidden’	name=’id’	value=’977736’	/>	

	 <input	type=’submit’	value=’Setup’	/>	

</form>

11

Example Code: Button Implementation

12

V. Initialize the Guide

For a user to interact with the guide, they need to request an authorization token from our
API. This request will contain the user data needed to initialize the guide including the
package ID, a unique user identifier, dependent information, and if necessary, the user’s
eligibility object. To do so, you will need to package all information in a json-encoded data
string and use cURL (or applicable) to POST this information to the
/connector file using the /session endpoint.

The API will validate the information and return a client-side token which is valid for 24
hours. Any repeated requests for that user and package combination will renew the token,
and information that was previously submitted will be replaced under that identifier (i.e.,
dependents changed). If the guide is partially completed, it will resume where the user left
off. Information can be retrieved either though the session reference that is generated or by
receiving the webhook for the user after the guide has been completed.

REQUEST A TOKEN

Property Example Value Description

elig object The eligibility definition consisting of the employee’s contribution
group and eligible plans per benefit type.

 type health Benefit type (health, dental, vision, accident, hospital, critical, std,
ltd, dcap, retire, life).

 group
 plans

_fulltime
[123,456]

Contribution / Eligibility Group
Array of eligible plan id’s

members array An array containing the user’s demographic information.

 name
 relation
 gender
 dob
 id
 life

John
self, spouse, child
male, female, other
1970-01-01
123
[12000,30000]

John
Relation to “self”
Gender
Date of Birth
An internal identifier for the dependent (optional)
Existing Life Coverage [employer, outside] (optional)

Required Data

Property Values Description

manage_dependents true, false Allow entry of new depen-
dents, if false, depends_url
required

dependents_url /dependents Where can the user go to
update dependents?

return_url /done Where should the user re-
turn if they go back?

company Sample Company Company Name

pay_periods 52|26|24|12| Number of pay periods per
year

version none,
compare_only,
skip_contributions,
skip_contributions_keep_dental,
skip_savings

Version of the guide to run

audio true, false Use the audio guided expe-
rience?

always_show_dv true, false Always show dental /vision
(even if recommendation is
to waive)

pdf true, false Allow PDF export?

feedback true, false Collect feedback from the
user at the end?

hire_date 2020-02-01 Date of Hire

privacy_url https://example.com/privacy Include external link to com-
pany privacy policy?

terms_url https://example.com/terms Include external link to com-
pany terms of use?

13

Optional Configuration

<?php

	 //SETUP	DATA	

	 $data	=	(object)	array(‘ref’=>’{ref}’,	‘package’=>’{package}’,	‘user’=>’{user}’,	

‘manage_dependents’=>true	‘return_url’=>’/’,	‘company’=>’{company}’);

	 //WHAT	IS	THE	EMPLOYEE’S	ELIGIBILITY	IF	REQUIRED?

	 $data->elig	=	(object)	array(

	 	 ‘health’=>(object)	array(‘group’=>’_fulltime’,	‘plans’=>array(123,	456)),

	 	 ‘dental’=>(object)	array(‘group’=>’default’,	‘plans’=>array(ABC,	DEF)),

	 	 ‘vision’=>(object)	array(‘group’=>’_corporate’,	‘plans’=>array(789,	XYZ))

);

	 //PRIMARY	MEMBER	(Required)	

	 $data->members[]	=	array(‘name’=>’{name}’,	‘relation’=>’self’,	

‘gender’=>’{gender}’,	‘dob’=>’{dob}’);	

	 //ADD	OPTIONAL	DEPENDENTS	IF	AVAILABLE

	 //$data->members[]	=	array(‘name’=>’Jane’,	‘relation’=>’spouse’,	

‘gender’=>’female	‘,	‘dob’=>’1970-01-01’);	

	 //$data->members[]	=	array(‘name’=>’Jack’,	‘relation’=>’child’,	‘gender’=>’male	

‘,	‘dob’=>’2000-01-01’);	

	 //MAKE	CALL	TO	/CONNECTOR

	 $curl	=	curl_init();	

	 curl_setopt_array($curl,	

	 	 array(

	 	 	 CURLOPT_RETURNTRANSFER	=>	1,	

	 	 	 CURLOPT_URL	=>	‘/connector’,	

	 	 	 CURLOPT_POST	=>	1,

	 	 	 CURLOPT_HTTPHEADER	=>	array(“X-Requested-With:	XMLHttpRequest”),

	 	 	 CURLOPT_POSTFIELDS	=>	array(‘endpoint’=>’session’,	‘data’=>json_

encode($data))	

)

);

	 $res	=	json_decode(curl_exec($curl));	

	 curl_close($curl);	

	 //$res->token	now	contains	a	valid	client	token	(string);	

14

Example Code: Request a Token

STARTING THE GUIDE

<!doctype	html>

<html>

	 <head>

	 	 <meta	charset=”utf-8”>

	 	 <title>Benefits	Guide</title>

	 	 <script>

	 	 var	pg_settings	=	{	

	 	 	 ‘url’:’/connector’,	

	 	 	 ‘token’:	‘{token}’,	

	 	 	 ‘on_complete’:	function()	{	location.href	=	‘/done’;	},

	 	 	 ‘on_error’:	function(e)	{	console.log(e);	}

	 	 };	

	 	 </script>

	 	 <script	src=’https://api.perky.co/pg-js’>/script>

	 	 <link	href=’https://api.perky.co/pg-css’	rel=’stylesheet’	type=’text/css’>

	 	 <!--INCLUDE	YOUR	OWN	CUSTOM	THEME	VARIABLES	HERE	-->

	 	 <link	href=’/theme.css’	rel=’stylesheet’	type=’text/css’>

	 </head>

	 <body></body>

</html>

Property Values Description

url /connector Your package identifier.

con body|#guide Container to render the UI in /guide HTML

token A Valid Token Client-side token

on_complete function() Callback function when the guide is complete (e.g., close the
window, return to enrollment)

on_error function() Callback function when an error has occurred

A page with the following code needs to be created on a path accessible to the employee
(/guide). This will accept the token and render the guide automatically using the externally
loaded js and css files.

Additional content should be added to this page for user authentication, as well as your own
css theme file.

Example Code

Configuration Options

15

VI. CUSTOMIZE YOUR INTEGRATION

ADJUST YOUR THEME VARIABLES
Because the HTML files reside on your own server; you can add or overwrite any
of the existing css variables as you see fit to match your integration. You can also
add any surrounding HTML to inject these modules into your pages. The
variables are the same for both the guide and setup pages.

/*!

theme.css

Copyright	(c)	2021	PERKY

By	setting	the	following	variables,	you	can	quickly	customize	the	the	look	of	the	

Benefits	Manager,	without	directly	editing	the	CSS.

/*IMPORT	GOOGLE	FONTS	*/

@import	url(“https://fonts.googleapis.com/css2?family=Barlow:wght@300;400;500;600”);

@import	url(“https://fonts.googleapis.com/css2?family=Nunito:wght@300;400;500;700”);

/*	STYLE	VARS	*/

:root	{

--pc-primary:	#00a598;

--pc-primary-50:	hsl(175,	100%,	96%);

--pc-secondary:	#244C5A;

--pc-overlay-text:	#FFFFFF;

--pc-error:	#DF3030;

--pc-error-50:	rgba(223,	48,	48,	.13);

--pc-warning:	#F18532;

--pc-success:	#4F8235;

--pc-success-50:	rgba(79,	130,	53,	.13);

--pc-info:	#08789D;

--pc-logo:	url(https://cdn.perky.co/logo.svg);

--pc-font-heading:	‘Barlow’;

--pc-font-body:	‘Nunito’;

--pc-border-radius:	24px;

--pc-border-radius-card:	12px;

}

16

VII. Capturing Events

SETTING UP A WEBHOOK
If you specify a webhook url in your connector file, it will be recorded with each request.
Specific events are setup to report back to the specified url when they occur. You can capture
these events and update your database and system acordingly. Webhooks are dispatched
every minute, and will try up to 5 times to receive a 200 HTTP response from the specified
url. You can view pending and dispatched webhooks for your implementation in Event
Notifications in the Developer Portal.

Webhook Event Action Matches

Package Add package/add

Package Delete package/%/delete

Package Update package/%/update

Session Init session

Session Delete session/%/delete

Guide Step guide/%/compare, guide/%/review

Format Type Values Description

type string package, session, guide The type of event

action string add, update, delete The action of the event

ref string a6c5e214962bdb975fae4bd9eed690fc The reference of the package

package string demo The unique identifier of the package

session string 55a8c7f2911b74ce40f5c38a8a684d06 The session reference

user string 123 The value supplied to identify the user

ts datetime 2020-03-14 09:08:04 Time the event occurred

Event Types

Event Format

17

[
			{
						“type”:	“package”,
						“action”:	“add”,
						“ref”:	“ff4f42c6608e404799fb9f969658c652”,
						“package”:	“demo”,
						“ts”:	“2018-03-14	09:08:04”
			},
			{
						“type”:	“guide”,
						“action”:	“review”,
						“ref”:	“ff4f42c6608e404799fb9f969658c652”,
						“package”:	“demo”,
						“session”:	“55a8c7f2911b74ce40f5c38a8a684d06”,
						“user”:	“123”,
						“ts”:	“2020-03-14	11:09:32”
 }
]

<?php

			if(isset($_POST[‘events’]))	{
						$events	=	json_decode(stripslashes($_POST[‘events’]));

						if(is_array($events)	&&	count($events))	{

									foreach($events	as	$event)	{

												//CHECK	EVENT	TYPE	&	ACTION
												if($event->type==’guide’)	{

															//GET	SESSION	REFERNCE
															$session	=	get_guide_results(‘/session/’.$event->session.’/results’);

															//FIND	LOCAL	USER	BY	ID
															$user_id	=	get_user($event->user);

															//FIND	LOCAL	ENROLLMENT
															$package_id	=	get_package($event->package);

															//UPDATE	LOCAL	USER	SETTINGS
															$health_id	=	$session->results->health->sel->id;
															$hsa_contrib	=	$session->results->contrib->hsa;																										

															//SAVE	LOCAL	USER
															save_user();

 }

 }

 }

 }

Example Event Notification

Webhook Listener Code Example

18

XIII. User Experience Examples

DASHBOARD / WELCOME PAGE
When the Benefits Guide is enabled for a client’s enrollment period, you could add a banner
and side bar task to the main page which links to /guide. Triggering this page will render/
restore the guide and associated data for that user. If the primary enrollment task could be
disabled until the user have completed the guide, that would be the most effective in driving
plan adoption. Once the user completes the guide, they can be redirected to the enrollment
confirmation page.

19

ENHANCING THE ENROLLMENT PROCESS

Highlight the recommended and/or selected plan for the user during their comparison and
expose a total estimated cost alongside those details. It is important to note that many plan
comparisons do not account for the Employer’s HSA contribution which helps offset the
net cost of each plan. We hope this can become a factor in the employee’s decision-making
process.

Note: The above content demonstrates a 1/1 enrollment period. You will need to determine
prorated values for new hires and off-year enrollment while adjusting out of pockets for
partial year utilization.

Recommended Plan

20

Pre-populate the employee’s recommended HSA contribution (showing both employer and
employee contributions as it relates to the annual maximums) alongside plan metrics.

Note: This graph demonstrates the potential to visually represent the data, as it relates to
estimated out-of-pocket and long-term savings. Any data visualizations contained outside of
the guide experience would be the responsibility of the integrating platform.

Pre-Populate Contributions

21

IX. PROGRAMMATIC ACCESS

REST API EXAMPLES
Additional methods are available if you wish to pull data directly from our API for reporting
purposes. Here are a few common use request and response examples. You can test these
calls at https://docs.perky.co/browse.

This endpoint will allow you to retrieve all packages stored in our system. A list of all tags and
other helpful properties will also be returned in order to further display and filter results.

Get All Packages

Endpoint: /packages

API Response:

{

	 “version”:	“1.0”,

	 “endpoint”:	“packages”,

	 “code”:	200,

	 “packages”:	[

	 		{	

	 	 “ref”:	“80d885f5ffd9fc43ca8a18f49e768e4d”,

	 	 “desc”:	“Package	1”,

	 	 “package”:	“125”,

	 	 “tags”:	[“34”],

	 	 “created”:	“2016-01-01	00:00:00”

	 		},

	 		{

	 	 “ref”:	“8a1db45971948145cfd53e46cfc2d247”,

	 	 “desc”:	“Package	2”,

	 	 “package”:	“456”,

	 	 “tags”:	[“35”,	“36”],

	 	 “created”:	“2016-01-01	00:00:00”

 }

],

	 “tags”:	[“34”,	“35”,	“36”]

}

22

https://docs.perky.co/browse

23

This endpoint will allow you to retrieve all packages stored in our system under a given tag.
This can be used if packages are setup under employer identifiers and an additional layer of
management is needed.

This can be used to retrieve the entire package object. You can get the package either by
reference, or by using your own internal package ID when it was created (designated by an
underscore).

Get Packages (Filtered by Tag)

Get Package

Endpoint: /packages/34

Endpoint: /package/80d885f5ffd9fc43ca8a18f49e768e4d

Alternate Endpoint: /package/_125

API Response:

API Response: Upon Request

{

	 “version”:	“1.0”,

	 “endpoint”:	“packages/34”,

	 “code”:	200,

	 “packages”:	[

	 		{

	 	 “ref”:	“80d885f5ffd9fc43ca8a18f49e768e4d”,

	 	 “desc”:	“Package	1”,

	 	 “package”:	“125”,

	 	 “tags”:	[“34”],

	 	 “created”:	“2016-01-01	00:00:00”

 }

],

	 “tags”:	[“34”,	“35”,	“36”],

	 “tag”:	“34”

}

24

You can remove a package from our system by calling the delete endpoint by reference or
package ID.

Delete Package

Endpoint: /package/80d885f5ffd9fc43ca8a18f49e768e4d/delete

Alternate Endpoint: /package/_125/delete

API Response:

{

	 “version”:	“1.0”,

	 “endpoint”:	“package/80d885f5ffd9fc43ca8a18f49e768e4d/delete”,

	 “code”:	200,

	 “result”:	“true”,

	 “ref”:	”80d885f5ffd9fc43ca8a18f49e768e4d”,

	 “package”:”125”

}

Get a list of all sessions created under a package. This can be used to find a session key for a
particular user or to determine how many individuals within a group have started a session.

Get All Sessions for a Package

Endpoint: /package/80d885f5ffd9fc43ca8a18f49e768e4d/sessions

Alternate Endpoint: /package/_125/sessions

API Response:

{

	 “version”:	“1.0”,

	 “endpoint”:	“package/80d885f5ffd9fc43ca8a18f49e768e4d/sessions”,

	 “code”:	200,

	 “ref”:	“80d885f5ffd9fc43ca8a18f49e768e4d”,

	 “package”:	“125”,

	 “sessions”:	[

	 		{

	 	 “ref”:	“3a45526dbd942f737303dac9aecdd55e”,

	 	 “token”:”sxGcJazN1597FBB60Fou72FPl1tW44T2”,

	 	 “user”:”1”,

	 	 “created”:	“2016-09-21	12:24:03”,

	 	 “expires”	“2016-09-22	12:24:03”

	 		},

	 		{	

	 	 “ref”:	“b4e0ccc28b0c6d1e353211f65ee96ef2”,

	 	 “token”:”8a1db45971948145cfd53e46cfc2d247”,

	 	 “user”:”2”,

	 	 “created”:	“2016-09-24	11:02:25”,

	 	 “expires”	“2016-09-25	11:02:25”

 }

]

}

25

Get a broken-down grid of all plan recommendations for the requested package.

Package Results

Endpoint: /package/80d885f5ffd9fc43ca8a18f49e768e4d/results

API Response:

26

{
		“version”:	“82b59edd63a1df208adf475365099f7fa708895a”,
		“endpoint”:	“package/532e3e4af9542740448e07821c474cdf/results”,
		“code”:	200,
		“ref”:	“532e3e4af9542740448e07821c474cdf”,
		“desc”:	“Full	Guide”,
		“package”:	“vb”,
		“year”:	“2020”,
		“total”:	0,
		“legend”:	{
				“health”:	{
						“types”:	{
								“single”:	“Single”,
								“two_person”:	“Two	Person”,
								“family”:	“Family”
						},
						“plans”:	{
								“1576609204557”:	“Gold	Plan”,
								“1576609716422”:	“Silver	Plan”,
								“1576609789884”:	“Bronze	Plan”
 }
				},
				“accident”:	{
						“types”:	{
								“single”:	“Single”,
								“employee_spouse”:	“Employee	+	Spouse”,
								“employee_child”:	“Employee	+	Child”,
								“family”:	“Family”
						},
						“plans”:	{
								“1573675330720”:	“Accident	Plus”
 }
				},
				“hospital”:	{
						“types”:	{
								“single”:	“Single”,
								“employee_spouse”:	“Employee	+	Spouse”,
								“employee_child”:	“Employee	+	Child”,
								“family”:	“Family”
						},
						“plans”:	{
								“1568933005897”:	“Hospital	Plus”
 }
				},
				“critical”:	{
						“types”:	{
								“single”:	“Single”,
								“two_person”:	“Two	Person”,
								“family”:	“Family”
						},
						“plans”:	{
								“1576610084863”:	“Group	Disease”
 }
				},
				“dental”:	{
						“types”:	{
								“single”:	“Single”,
								“employee_spouse”:	“Employee	+	Spouse”,
								“employee_children”:	“Employee	+	Children”,
								“family”:	“Family”
						},
						“plans”:	{
								“1567795172149”:	“Dental	Plus”
 }
				},
				“vision”:	{
						“types”:	{
								“single”:	“Single”,
								“employee_spouse”:	“Employee	+	Spouse”,
								“employee_children”:	“Employee	+	Children”,
								“family”:	“Family”
						},
						“plans”:	{
								“1568747137376”:	“Vision	Plus”
 }
				},
				“groups”:	{
						“default”:	“All	Employees”
 }
		},
		“created”:	“2019-08-07	20:06:56”,
		“modified”:	“2020-09-16	17:48:12”,
		“completed”:	0,
		“grid”:	{},
		“results”:	{}
}

X. Developer Portal

All implementation documentation, sample resources, data-browser and API endpoints are
available on our developer Access Portal located at https://docs.perky.co (login required).

27

DOCUMENTATION

https://docs.perky.co

